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The steady-state properties of transverse circularly polarized waves propagating along a static magnetic 
field in a uniform plasma (metal) are considered. Using the Landau theory of Fermi liquids, we compute the 
effect of correlations on the reflection properties of a semi-infinite metallic plasma. The expressions are 
numerically evaluated and discussed for a range of parameters pertinent to the alkalis. 

I. INTRODUCTION 

THE properties of electromagnetic waves propa
gating in a plasma along a magnetic field have 

been extensively studied.1-3 In previous calculations 
the electrons were treated as the current carrying con
stituent of a noninteracting gas. For real metals the 
a priori neglect of electron-electron interaction effects 
is unsatisfactory since the mean energy of interaction 
of the electrons (Coulomb energy) is of the order of 
their mean kinetic energy. Under such conditions sub
stantial correlation effects in the motion of the electrons 
may be expected. From a practical point of view, how
ever, it is known that for a wide range of physical 
parameters, treatments which neglect explicit correla
tion effects provide an accurate description of the elec
tromagnetic properties of metals and semimetals. We 
are interested in determining the range of physical 
parameters, frequency, external magnetic field, carrier 
density, etc., where the effect of electron-electron cor
relation may, hopefully, be measured experimentally. 

In 1956, Landau4 constructed a semiphenomenologi-
cal theory of a system of fermions, such as He3, inter
acting via a short-range two-body force. This work was 
later extended by Silin5 to a Fermi liquid with long-
range Coulomb interactions. We make use of the Fermi-
liquid theory to compute the reflection properties of a 
semi-infinite slab of metal placed in a magnetic field 
oriented perpendicular to its surface. In this geometry 
for electromagnetic waves incident normally, it is 
known1'3 that the metallic sample will exhibit an ab
sorption edge at approximately the Doppler shifted 
cyclotron frequency. 

o)c/co= 1 + (q/qo)(Vp/c) , (1) 

where coc is the electron cyclotron frequency, q is, 
crudely speaking, the wave number of the electro
magnetic field in the medium, 0̂ the wave number in 
free space, and VF is the Fermi velocity. The resonance 

1 P. B. Miller and R. R. Haering, Phys. Rev. 128, 126 (1962). 
2 P. M. Platzman and S. J. Buchsbaum, Phys. Rev. 128, 1004 

(1962). 
3 P. M. Platzman and S. J. Buchsbaum, Phys. Rev. 132, 2 

(1963). 
4 L. D. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956) 

[English transl.: Soviet Phys.—JETP 3, 920 (1956)]. 
* V. P. Silin, Zh. Eksperim. i Teor. Fiz. 33, 495 (1957) [English 

transl.: Soviet Phys.—JETP 6, 387 (1958)]. 

in the electrons motion which exhibits itself as a rapid 
fluctuation in the surface impedance of the sample is 
shifted from the value wc/o;= 1. This comes about since 
the electrons traveling with the phase velocity of the 
wave see a Doppler shifted frequency. It is these elec
trons which interact most strongly with the wave. As a 
result the resonance in the impedance is shifted. Speci
fically we are interested in possible shifts in the position 
of, and modifications of the shape of the Doppler shifted 
electron-cyclotron resonance as the result of electron-
electron interactions. 

II. CALCULATION 

The basic assumption of the Fermi-liquid theory is 
that it presupposes that as the interaction is turned on, 
the single-particle states in the neighborhood of the last 
occupied one remain approximate eigenstates of the 
interacting system, and that there is a one-to-one cor
respondence between these states and the single-electron 
states of the noninteracting Fermi gas. These approxi
mate eigenstates are called quasiparticle states. For 
slowly varying external disturbances, the transport 
properties of the Fermi liquid are completely described 
by the quasiparticle distribution function /(P,X) in 
momentum and configuration space.6 (The external dis
turbance varies slowly enough in space so that the lack 
of commutivity of P and X is unimportant.) In equi
librium and at zero temperature the distribution of 
quasiparticles /o(P,X) is 

/o(P,X) = l , 
= 0 , 

\P\<Pr, 
\P\>PF. 

(2) 

For the spherically symmetric electron gas the quasi
particle energy is E°(P) = P2/(2m*), where m* is an 
effective mass whose value depends on the dynamics of 
the interaction between quasiparticles. In nonequilib-
rium situations, the quasiparticle distribution function 
satisfies a transport equation similar to the Boltzmann 
equation. We are interested in the transport equation 
in the linear approximation, i.e., when the deviation 
from /o is small. If we write / = / o + / i , with 

6 The distribution function f(P,X) is a matrix in the spin 
variables F(P,X)=/(P,X)+m(P,X).<r. The function m(P,x) is 
pertinent only when quantities which depend on the spin (the 
susceptibility) are of interest. We will be concerned only with 
/(P,X). 
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/i=5[E°(P)—Ei]g the linearized transport equation 
for g becomes 

dg/dt+V- V x (g+£i)+ (e/c) (V x H) • VP(g+£i) 
-eE.V=-vcg. (3) 

The quantity vc is a phenomenological short-range col
lision term which permits the system to relax to equi
librium; Va=dE°(P)/dPa=Pa/tn* is the velocity of the 
quasiparticles and 

E,= fs(?,¥')dtEF-E>(P')lg(?',X) 

X[<Z3Py(27r&)3] (4) 

is the change in energy of the quasiparticles produced 
by a change in their distribution function. 

The correlation, or interaction function S(P,P') is 
the basic quantity characterizing the Fermi liquid. 
Owing to the presence of the delta function in the dis
tribution function /o and in the transport equation, the 
value of S(P,P') is only of interest for | P | = | P ' | =PFy 

where PF is the Fermi momentum. 5(P,P') may then 
be considered to be a function of the angle between P 
and P'. It is conveniently represented by an infinite 
sequence of Legendre polynomials. 

S(P-PO = E»SwPw<°>(cos0), (5) 

where P is a unit vector in the direction of P. For con
venience, we define a set of dimenionsless quantities 

80=SQm*P F/(2T)W 

SWEE [Snm*PF/ (27r)2^][(^~ 1)!/ (»+1) ! > > 1. ( 6 ) 

The correlation function S(P-Pf) contains all the in
formation pertaining to explicit dynamical many-body 
effects. The limit S —> 0 is the free electron or Hartree 
limit. In this limit the transport equation, Eq. (3) 
becomes the usual Vlasov equation and the only "cor
relation" effect which is included is the self-consistent 
electromagnetic field. 

The correlation function is as important to the many 
electron problem as the shape of the Fermi surface is in 
the one-electron problem. Unfortunately, the function 
S(P-Pf) (for the region of metallic densities), cannot 
be computed from first principles.7 Hopefully then a 
transport experiment of the kind to be considered here 
might enable one to measure the characteristics of the 
scattering function S(P-Pf). Ideally one would like to 
perform an experiment in which a specific moment of 
the scattering function is measured. It was first pointed 
out by Landau4 that the zeroth and first moments of the 
scattering function were simply related to two ele
mentary properties of the quasiparticle gas. The clothed 
mass ffi* of the quasiparticles is related to the first 

7 C. Herring has recently computed the scattering function S as 
a power series in ra(r8=n113 GH where n is the electron density and 
an is the Bohr radius) for metals f««2-6 (private communica
tion). 

moment S\ by 
w*/w=l+ |6 i (7) 

and the velocity of ordinary sound vs is related to the 
zeroth moment So by 

vs = (So+ 1)1/2[7V (3mm*)1/2]. (8) 

A cyclotron resonance experiment in the extreme 
anomalous limit, in the so-called AzbeP-Kaner 
geometry,8 measures only the effective mass.9 On the 
other hand, the cyclotron resonance experiment in the 
so-called Gait geometry10 involves, as we shall see, all 
of the moments. In the Gait geometry a static magnetic 
field perpendicular to the surface of the sample is 
utilized and the reflection (or absorption) of circularly 
polarized electromagnetic waves propagating along the 
magnetic field is measured as a function of the applied 
field. The solution, neglecting correlations, of the coupled 
Maxwell-Boltzmann equations in the presence of a 
single boundary (assuming specular reflection of the 
carriers at the surface) may be reduced to the solution 
of an equivalent infinite medium problem.3 The final 
expression for the surface impedance Z is 

Z r°° da 
- = ( 2 i A ) ; — , (9) 
ZQ JO Zq2— e(q,o))2 

where Zo is the impedance of free space. The quantity 
c(#,co) is the finite wave number and frequency-depend
ent dielectric constant for the infinite medium, 
[efocojs l+a+iq^/icS]. 

The quantity E\ is Eq. (4) is related to a first-order 
change in the distribution function by the relationship 

E1=|^(P,F,X,X05[EF-Eo(P0]g(F,X0 

In writing Eq. (4) we have assumed that S(P,1?',X,X') 
= S(P,P')S(X—X'). With this assumption the spatial 
part of the problem is identical with that in the non-
interacting case. For an interacting gas of quasiparticles 
in real materials correlations are not local in space but 
do in fact extend over distances of the order of a Debye 
length (\D~VF/O>P). For metallic densities this is of the 
order of the interparticle spacing. The Debye length is 
small compared with distances over which the field 
varies appreciably, typically distances of the order of 
the high-frequency classical skin depth (\s^c/o)p), 
so that to a good approximation we can neglect nonlocal 
effects. With the locality assumption on the function 

8 M. Ya. Azbel, E. A. Kaner, Zh. Eksperim. i Teor. Fiz. 30, 811 
(1956) [English transl: Soviet Phys.—JETP 3, 772 (1956)]. 

9 This statement has been proved by J. M. Luttinger (private 
communication). 

10 J. K. Gait, W. A. Yager, F. R. Merritt, B. B. Cetlin, and 
A. D. Brailsford, Phys. Rev. 114, 1396 (1959). 
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FIG. 1. Polar coordinate system used for solution of the trans
port equation, Eq. (3). H is the magnetic field, q is the propagation 
vector, and P is the quasiparticle momentum. 

,5(P,P/,X,X/), the expression for the impedance within 
the framework of the Fermi-liquid theory is still given 
by Eq. (9). However, the dielectric constant e(#,co) will 
now include the effects of correlations. 

This dielectric constant is obtained by linearizing the 
transport equation, Eq. (2), with an rf field varying as 
exp(iq«X—o)t) and solving for the induced current. The 
current is given by 

ne r dzP 
Ia^=- / 7——^(P,f f ) f i (£p°-^) (11) 

mj (2w)zhd 

or, equivalently, using Eq. (4) 

d*P ne r dr. 

m*J (2TT 

•P"(g+Ei)5(EP«-EF) . (12) 
(2ir)W 

We choose our coordinate system (see Fig. 1) so that 
the static magnetic field H and the propagation vector 
q point along the z axis. The angles 6 and <£ are polar 
angles specifying the direction of P. For a right-handed 
circularly polarized wave (E=ExUx+iEyUy) the 
transport equation for g(P,q) is, 

iqP dg 
-ia>g(P,q) + cosOg(P,q)+<**— 

+ 
•iqP d -| 

cos#+coc*— 
L m* d$ J 

xJd*Py(2whyS(?,?')d(EF--EP»)g(?',q) 

XeEe**—sin0, (13) 
nr 

If we set g(P,q) = g(6,$) = g(d)el*y then it is easily 
shown that 

ieEVF* sin0 (qVF* cos0+coc*) 
«(*)= + He), (14) 

where VF* = PF/rn* and 

£=(a>-a>*-qVF*cosd). (15) 

The quantity A(0) is 

A(0)=f:5ttPn(1>(cos0) 

X [ g(e')Pn^(cosd')d(cosd'). (16) 
J TV 

Equation (14) is an infinite set of coupled linear equa
tions for the quantities ttn= Jl° Pn

a) (cosd)g(d)d(cosd). 
If we terminate the spherical harmonic expansion for 
S(P-Pf) after a finite number of terms, then Eq. (16) 
may be solved self-consistently for the quantity g(6). 
Knowing g(6), we may substitute into Eq. (11) and 
evaluate the current. 

For the purposes of this paper we will include the 
first three moments of S{P-P!) So, Si, and 52. We have 
no real justification for terminating this series after so 
few terms; however, there are at least some crude argu
ments which suggest that a Legendre expansion for 
S(P-P') converges rapidly. Landau has shown that the 
function S{P-Pf) is proportional to the negative of the 
forward scattering amplitude of two quasiparticles. A 
typical type of exchange scattering diagram which 
enters into a microscopic calculation of S{P-Pr) is 
shown in Fig. 2. The dashed line is a bare Coulomb 
line and the solid lines represent electron (hole) prop
agators. This type of scattering diagram contributes a 
term to S(P-P') of the form 

— * 2 

S^XP-P'Y 
| P ' - P | 2 e L ( | P ' - P | , 0 ) ' 

(17) 

where ei, (#,()) is the zero-frequency longitudinal di
electric constant. If €L is computed by summing the 

where coc* = \eH/tn*c\ and 6o=u)+ivc. 

•orv/w = -—. -f 'A/ 

FIG. 2. A typical type of exchange scattering diagram which 
contributes to S(P-P'). Solid lines are electron propagators and 
dashed lines represent Coulomb propagators. 
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simple set of bubble diagrams shown in Fig. 2 (RPA 
approximation), we find 

iL(qfl) = l+(qD
2/qi)F(q) , (18) 

where F(q)^l for q<£qF and F(q)*=*2 for q=2qF. Using 
this expression for the dielectric constant, we find 

5 ( 0 ) / 5 ( x ) = | [ l + 8 P / / g f l
2 ] . (19) 

For potassium S(0)/S(w)**0.7 so that on the basis of 
this crude computation the scattering is roughly 
spherical. 

If we truncate Eq. (5) after three terms, solve 
Eq. (16) and substitute into Eq. (11), we find for the 
scalar conductivity 

a+=iicPH 

(1+45x73) 

[ 1 + ( F V C O W * 2 ) ( 1 / ( 9 5 2 ) + 4 / 1 5 - C O 7 W * ) ] T' (20) 

where y= (w—coc*)/gFF*, and cop= (4:wne2/m)112. The 
functions F* and IF* are defined by 

J IT 

sm2dd{cosd) 

W 

(do—coc*—qVF* cos0) 

0 sin20 cos0i(cos0) r sir 

J v (CO — ( c o — c o c * — < ? F F * C O S 0 ) 

(21) 

(22) 

The conductivity, although it is reasonably compli
cated, approaches some rather simple and physically 
meaningful limiting values. In the limit q—>0, <r+ 
approaches 

(<r+)q->o=ia)p2/(o)—o)c) . (23) 

There are no effects due to correlations in this limit. 
This is a consequence of the fact that total momentum 
is conserved in electron-electron collisions. The induced-
current (for a zero wave vector) electric field is not 
affected by the electron-electron interactions. In the 
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FIG. 3. A plot as a function of o^/w of the relative shift in the 
position of the Doppler shifted absorption edge due to correlation 
effects. 
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FIG. 4. A plot of the Doppler shifted absorption edge as a 
function of magnetic field. The plasma frequency, collision fre
quency and Fermi velocity are fixed. The four curves show the 
effect of correlation on the edge. The curve labeled (1) has a §i = 0 
and a 52=0, i.e., uncorrelated. Curve (2) has Si=0.1875, 62 = 0. 
Curve (3) has Si=0.1875, 52= -0.166, and curve (4) has 
5i=0.1875, 5 2 =-0 .05 . 

limit co/o;c —» 0, the effect of correlations to lowest order 
in Vc/o)c vanishes. This is true not only for our truncated 
scattering function, but for a general scattering function 
as well. If we examine the transport Eq. (3) and the 
second expression for the current Eq. (12), then 
neglecting the relaxation term and the time derivative 
term we see that (g+Ei) satisfies the usual transport 
equation, without correlations. The energy delta func
tion in Eq. (12), is just sufficient to produce a factor m* 
canceling the 1/m* in front of the integral leading to 
the uncorrelated conductivity. 

III. EVALUATION AND DISCUSSION OF THE 
SURFACE IMPEDANCE 

Typically, the absorption coefficient of a semi-
infinite metallic plasma exhibits a rather sharp reso
nance at the Doppler shifted resonance frequency.11 If 
we substitute for q in Eq. (1), the value which is ob
tained from a simple analysis which leaves out nonlocal 
effects, i.e., 

^ / f f o a = - a , P V [ « ( « - a ) c ) ] . (24). 

Then we may rewrite the approximate Doppler shifted 
resonance condition Eq. (1) as 

o>c/o>~l+Z(VF/c)(a>p/G>)J«. (25) 

At low frequencies, where (O)P/O)VF/C)^>1 and COC/G£S>1, 
the effects of correlations are not observable. At higher 
frequencies, where o)p/o)V F/C^ o)c/o)^ly correlations 
are important. 

Since the simple resonance condition, Eq. (24), a t 
these "high frequencies,, is now a function of the "mass" 
of the particles, in this case the bare mass, and since 
correlations do play a role, it seems natural to ask what 
mass comes into play. There are, of course, two masses 
in the problem; the so-called bare mass and the clothed 
mass [see Eq. (7)]. In Fig. 3 we have plotted the 

" J. Kirsch and P. B. Miller, Phys. Rev. Letters 9, 421 (1963). 
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shift in frequency of the Doppler edge from its un
corrected value as a function of (wp/co). For fixed values 
of (vc/oo) = 0.03 and VF/C—0.004 there is a shift away 
from what might be called a bare-mass resonance 
toward higher values of the magnetic field, i.e., towards 
a clothed mass resonance. We have taken 8%—^ so that 
the effective mass equals 1.25 bare electron masses (the 
observed effective mass in potassium).12 The three 
curves in Fig. 3 are for three values of #2 (52=0, 82=%, 
52= —§). A positive 82 tends to decrease the mag
nitude of the computed shift in frequency whereas a 
negative 82 increases the shift. The important thing to 
note here is that the resonance occurs at neither the fre
quency determined by the bare mass nor by the clothed 
mass. The shift is a dynamical function of the frequency, 

In Fig. 4 we have plotted the actual absorption line 
for fixed values of the plasma frequency coi,/co=100, 
Fermi velocity, collision frequency, and 5i. The effect 
of a negative 82 on the line shape is rather striking. I t 
produces an over-all smearing of the line relative to the 
uncorrelated line. The magnitude of the steeply rising 
portion of the absorption curve is severely reduced. In 
addition, a negative 82 causes the absorption edge to 
exhibit a rather prominent minimum. In some cases 
(i.e., for the case 82= — f or —^u) the minimum or hole 
in the absorption edge effectively causes a splitting of 
the edge into two peaks. 

Physically, we can understand the origin of this de
crease in absorption. Suppose for the purpose of this 
rather crude argument that the electric field inside the 
metal could be characterized by a single wave number 
q, as it can be in the local or classical theory. The edge 
in the absorption is due to a sharp increase in the con
ductivity when o)c/o)^ ( l+#JWco). The electrons at 
the Fermi velocity traveling in the direction of the wave 
see a static dc field spiral out around the lines of force 
and pick up energy from the field. Suppose we now ask 
ourselves if it is possible to introduce a mechanism 
which, in this region of increasing conductivity, would 
tend to decrease the induced current or conductivity, 
thus producing an associated dip in the absorption edge. 
Electron interactions can produce just this effect. As 
the quasiparticles (the current carriers in a Fermi liquid 
theory) are dragged through the surrounding, now 
slightly incompressible fluid, they create a backflow by 
pushing other quasiparticles out of their way. This 

12 C. C. Grimes, Bull. Am. Phys. Soc. (to be published). 

backflow carries current. At a definite wave number q 
and frequency a), it is possible for the backward flowing 
current to exactly cancel the forward flowing current 
so that the conductivity goes to zero. For the circularly 
polarized mode we simply require that 

fg(6) sm6d(cos6)~Qi=0. (26) 

This implies that 

F* / 1 4 \ 
1 + ( — H cbyW*) = 0. (27) 

a)W*2\982 15 / 

For a finite 82 (second moment) it is possible to find at 
least one solution to Eq. (27) (to zeroth order in vc/u). 
The dips in the conductivity, which show up in this 
simple model are characteristic of the interacting 
Fermion system. Had we retained more terms in the 
multipole expansion of the scattering function, it is 
likely that there would exist multiple solutions of 
Eq. (27). In the actual boundary value problem, q is 
not well defined and the zero in the conductivity appears 
as a minimum in the absorption curve. If the minimum 
happens to fall in the high field or classical region of the 
curve, then the magnitude of the effect is reduced since 
in this limit q—>0 and there are no effects due to 
correlations. 

The observation of correlation effects in the alkali 
metals, unfortunately, is extremely difficult since the 
magnetic fields required in order to keep the Dopper 
shifted edge in the neighborhood of the cyclotron fre
quency are enormous. However, experiments could be 
performed in semimetals, semiconductors, or doped 
insulators. 

One should look for a material, preferably one with 
a simple band structure, which has an rs> 1. In addition, 
G)P/O)VF/C~WC/W^I and o)/v<^>\. The frequency range 
in which one can work will primarily be limited by the 
magnetic fields which are available. 
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